

Smart Sleep: How AI is Revolutionizing Sleep Medicine and Health Monitoring

14.8.2024

Henri Korkalainen, Ph.D., Adjunct Professor Department of Technical Physics, University of Eastern Finland Diagnostic Imaging Center, Kuopio University Hospital Cancer Center, Kuopio University Hospital

Current situation in sleep medicine

Sleep disorders are highly prevalent

Affects a significant portion of the general population, disrupts sleep, impairs daytime functioning , and is connected to severe health outcomes

The golden standard of diagnosis is an overnight polysomnography (incl. EEG, cardiorespiratory signals, leg EMG etc.) Expensive and require extensive manual post processing and analysis

Home-based solutions also used but often leave out the EEG -> no information on sleep microstructure

The information of the multisignal recordings usually condenced into a few simplistic metrics

Counting of the events; dates back to the times with analog paper-based recordings

Sleep Technology and Analytics Research (STAR)

Who we are?

- 1. Group consists of mainly physicists and engineers interested in sleep-related diseases
- 2. The group was founded in 2017
 - 2 professors/Assoc. Professors (Töyräs, Leppänen)
 - 6 senior research fellows (Kulkas, Kainulainen, Korkalainen, Nikkonen, Terrill, Myllymaa)
 - 7 postdocs (Pitkänen, Karhu, Rusanen, Howarth, Sillanmäki, Ferreira-Santos, Behbahani)
 - Lab engineer (Laitinen) and research nurses (Häkkinen, Hiltunen)
 - 18 Ph.D. students + couple of M.Sc. Students
- 3. Focus on signal analysis, neural networks, and electrode development
- 4. > 4,2 million € of research funding
 - EU Horizon 2020, (2021, 15M€); Sleep apnea
 - Horizon Europe (2022, 4,4M€); Data security
 - Horizon Europe (2023, 5M€); Data security
 - Nordforsk (2018, 2.4M€); Sleep apnea
 - NHMRC (2021, 260K€); Sleep apnea
 - Kuopio University Hospital (2021-2023, >1M€); Sleep
 - Private Foundations (2021-2023, ~0,5M€); Sleep
- 5. Active collaboration with commercial partners and high-level international research institutions

UNIVERSITY OF EASTERN FINLAND

Future directions in diagnosing sleep disorders

Beyond manual analysis

More comprehensive analysis not restricted to visual inspection

Portable diagnosis and long-term measurements

Simple, low-cost sensors that do not disrupt sleep

Enhancing research

Open-access datasets New research not limited with current practices U

Informed decision making

More comprehensive overview of symptomology and identification of patients benefitting most from treatment

Scoring of sleep stages

Deep learning –based automatic scoring

Without EEG? -> photoplethysmography

• Accuracy:

Wake\N1\N2\N3\REM: 6

Wake\NREM\REM:

68.7% (κ=0.60)

: **83.3%** (к=0.72)

Huttunen et al. Assessment of Obstructive Sleep Apnea-Related Sleep Fragmentation Utilizing Deep Learning-Based Sleep Staging from Photoplethysmography Sleep Korkalainen et al. Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea, Sleep, zsaa098, 2020. 10.1093/sleep/zsaa098 UEF // University of Eastern Finland

Automatic respiratory event scoring for detecting obstructive sleep apnea

Wearable devices

- Further work with excellent results:
 - Self-applicable EEG set
 - A wearable EEG headband

Difficulties in validation

- Data collection together with a clinical standard polysomnography
 - Expensive and time-consuming
- Often only healthy participants are used when validating the devices
 - Generalizibility?
- Data collection from devices
- Rapid development of devices
- Reliability and understanding the sources of error

Example: wearable EEG devices - validation is required

Forehead EEG Ground EOG Chin-EMG EEG Neuroline Neuroline Textile 720 726 electrodes

Sleep staging

Forehead EEG, accuracy = 82 %

		Wake	N1 Prec	N2 licted La	ي abel	REM
True Label	REM	0.03	0.00	0.10	0.01	0.86
	- N3	0.01	0.00	0.22	0.77	0.00
	N2 -	0.03	0.01	0.86	0.04	0.05
	۲IJ -	0.19	0.21	0.46	0.01	0.13
	Wake	0.80	0.02	0.13	0.00	0.05

Standard EOG, accuracy = 87 %

SLEEP REVOLUTION

Snoring detection and sleep apnea screening -Smartphone apps

- Several apps available
 - Promising results for detecting snoring (e.g. Camacho et al., 2015; Chiang et al., 2022; Figueras-Alvarez et al., 2020; Klaus, Stummer, & Ruf, 2021)
 - Specificity, variability between devices, real-world situation (e.g. bed partner)?

Snoring detection and sleep apnea screening -Smartphone apps

- OSA estimation
 - Respiratory sounds and/or movement with a smartphone
 - Perform fine in controlled cases, can have low specificity (Cho et al., 2022; Nakano et al., 2014; Narayan et al., 2019; Tiron et al., 2020).
- Sleep diaries also possible with apps to enable simple collection of subjective data

The Sleep Revolution app

Sleep apnea screening – nearables

Nearables: bed sensors, radar technologies Require an additional sensor for the sole purpose of sleep measurements Potential to estimate cardiac signals and respiration (Balali 2022)

Figure courtesy of Withings

Sleep apnea screening – consumer-grade oximetry

- Fitness trackers, smartwatches, rings
 - Sensor quality is often sufficient
 - Physiologically relevant data
 - Screening accuracy, sensitivity, and specificity vary across devices between ~40% to

90% (Chen, Wang, Guo, Zhang, & Xie, 2021; John, Nundy, Cardiff, & John, 2021; Mokhtaran et al., 2022; Papini et al., 2020)

Figure courtesy of Withings

Figure courtesy of Oura

Explainable AI: Gray areas

Rusanen M *et al.*, Empowering Sleep Medicine with Human-in-the-Loop Scoring Approach: Automatic Sleep Analysis with Gray Areas. MS under review. 2023

Generative AI

R Huttunen et al. Synthesizing polysomnography signals with generative adversarial nets. Proceedings of the EMBC 2023.

Tools in practice

Research infrastructure

Two full polysomnographic examination rooms in sleep laboratory Medical technology testing facility RESEARCH DEVELOPMENT CLINICAL EVALUATION COLLABORATION TEACHING Internationally unique sleep research center Regional visibility and talent attraction Services for health tech companies Open access data Novel scientific approaches High-quality scientific publications Innovations Multidisciplinary training

UEF // University of Eastern Finland

https://sites.uef.fi/star/smartsleeplab/

European Union European Regional Development Fund

Tools in practice

Visualize results with signals for review/editing of the scoringsHighlight gray areas of the scoring

Sleeplab-format ecosystem provides tools for reading, writing and processing of data

• Create reports automatically

Subject: 10009 Study Date: 06.07.2023

Sleep Stage Distribution Pie Chart

Sleep Statistics

Parameter	Value	
Total sleep time	3 hours and 40 minutes	
Sleep efficiency	46.77%	
Sleep onset latency	87.5 minutes	
Wake after sleep onset	163.5 minutes	
REM latency	87.5 minutes	

Subject: 10009 Study Date: 06.07.2023

Respiratory Events

	Count	Max length (s)	Mean length (s)
All events	21	31	15.7
Apneas	3	16	13.3
Hypopneas	18	31	16.1

Event Indices

Parameter	Value (1/h)	
Apnea-hypopnea index (AHI)	5.7	
Apnea index	0.8	
Hypopnea index	4.9	
REM-AHI	11.6	
NREM-AHI	3.1	

The quality of the recordings is verified by an expert. All analyses are conducted using automatic tools. Hypnogram and respiratory events are scored using scientifically validated deep learning tools: Huttunen et al., A comparison of signal combinations for deep learning-based simultaneous sleep staging and respiratory event detection, IEEE Transactions on Biomedical Engineering doi:10.11097/HBR-2022.3225268

Thank you!

Feel free to contact me at: henri.korkalainen@uef.fi